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THE NON-STATIONARY CONTACT PROBLEM 
FOR ROUGH BODIES TAKING HEAT GENERATION 

BY FRICTION INTO ACCOUNT1" 

A .  A .  Y E V T U S H E N K O  a n d  V. I .  P A U K  

L'vov 

(Received 11 May 1994) 

The plane contact problem of the theory of elasticity for a rough half-plane when heat is generated due to friction is considered. 
It is assumed that a conslant impressing force is applied with a certain eccentricity to a punch that is parabolic in plan, and that, 
at the initial instant of thne, it begins to execute antiplane motion with a constant velocity. The problem is reduced to a system 
of integral equations in the contact pregsure and the heat fluxes induced in the half-space and the punch, and a numerical algorithm 
is developed for solving :~t. Copyright © 1996 Elsevier Science Ltd. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

An elastic parabolic punch, moving uniformly with velocity V in the direction of the z axis (Fig. 1), is impressed 
by a force P, applied with an eccentricity e, into an elastic homogeneous half-space. The antiplane deformation 
of the bodies caused by the motion of the punch is assumed to be independent of the deformation plane. It is 
assumed that in the contact region the forces of friction Xzy(X, t) are related to the normal stresses oy(x, t) by 
Amonton's law xzy(x, ,!) = foy(x, t) ( f  is the coefficient of friction), and there are no shear forces X~y(X, t). 

The surfaces of the body outside the contact region are thermally insulated, and there is ideal thermal contact 
in the contact region. 

The radius of curvature of the punch base • is sufficiently large, so that when solving the problem of thermo- 
elasticity for the punch it can be replaced by a half-space. 

With these assumptions it is required to determine the dimensions of the contact region A(t), the distribution 
of the contact pressure p(x, t) -- --oy(x, t), the temperatures Ti(x,y, t) and the thermal fluxes q,{x, t), (i = 1, 2) in 
the bodies and on their surfaces. 

2. R E D U C T I O N  O F  T H E  P R O B L E M  T O  A S Y S T E M  
O F  I N T E G R A L  E Q U A T I O N S  

The transient temperatures of the surfaces of the bodies can be found from the formula [1] 

1 t 

A(~) 
Ixl <**, t>o 

qi(~,x) exp(-R2) d~dx,  k i = x - {  
t -  x 2x/k ~ (t - ~) 

(2.1) 

where ki, ~ (i = 1, 2) are the thermal diffusivity and the thermal conductivity of the punch and the half-space, 
respectively. 

We will represent the vertical displacements of the punch boundary (i = 1) and the half-space (i = 2) in the 
form 

vi(x,t)ffiv~(x,t)+v~(x,t)+va(x,t), xeA(t), y=O, t>O (2.2) 

Here ~(x, t) are the elastic displacements due to the action of the normal stresses %(x, t), v~(x, t) are the 
temperature displacements due to frictional heat generation, and v:(x, t) is the displacement resulting from the 
micro-roughness in 'the contact region. 

We find the elastic displacements from the solution of the problem of the theory of elasticity in the quasi-stationary 
formulation [2] 

o.~(x,t)=(-l) TM l-vi ~ p(~,t)Inl~-x[d~ xeA(t), t>O 
~l~i AO) (2.3) 
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where vi, I~ (i = 1, 2) are Poisson's ratio and the shear modulus of the materials of the bodies in contact, 
respectively. 

The normal thermal distortions of the surface of an elastic half-space due to the action on the part of its surface 
x E A(t), t > 0,y = 0 of heat sources of power qi(x, t) (i = 1, 2) are [3] 

6 ( k i )  . ,~. , .  vl(x't):(-l)i~ikilt 0 ja(t) J q i ( ~ " O ~  aSa' '  x~A(t), t > 0  (2.4) 

S~ ai(l+vi) 6(ki) 2 exp(-k~) '~ 2 
= , = = f e x p ( - s  ) , I s  

Xi 4-~ R, 0 

(o~ (i = 1, 2) are the coefficients of linear thermal expansion of the materials of the bodies). 
We will assume a linear relationship [4] between vai(x, t) and the contact pressure 

vfl(x,t)=(-l)i+t~ip(x,t), x~A(t), t > 0  (2.5) 

where 13i are constants which depend on the degree of roughness of the bodies [4]. Note that relation (2.5) also 
describes the deformation of a Winkler-type linear coating. 

Using relations (2.1) we will satisfy the conditions for non-ideal thermal contact between the bodies taking heat 
generation into account [6] 

ql(x,t)+q2(x,t)=fVp(x,t), x~A(t), y=O, t>O 

ho[qt (x,t)-  q2 (x,t)l = Tl ix, t) - T2(x,t) 

(h0 is the contact thermal resistance), and using relations (2.2)-(2.5) we satisfy the condition for mechanical 
contact 

Ul(X,t)-u2(x,t)=Al(t)+xA2(t)-g(x), x~A(t), y=0 ,  t > 0  

where Al(t), A2(t) are the relative normal displacement and the inclination of the contacting bodies as rigid wholes, 
respectively, and g(x) = x2/(2r) is the function describing the punch base. 

We put 

2 2 
x=Aox, ' ~=Ao~." t=A~ to .~=A~ ,, A(t)=AoA*(t, ) 

kl kl 

Ti(x,t)=f~l Ti* (x',t ') ,  qi(x,t)=L-~-q~.(x',t °) (i=1,2) 

_•_ 3 It(l - v I ) ~.j 
p(x,t)= P° (X*'t° )' '40 = 4 otlfVla , 1 1  = 

2(!-  v~)laj~t2 
( I - v  I )la 2 + ( ! - v  2) la I 

(2.6) 

whereA0 is the half-length of the contact region when the boundary surface of the half-space is thermally insulated, 
and the temperature field of the punch is steady [7]. 

Using the notation in (2.6) we can write the system of integral equations and equilibrium conditions of the bodies 
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in the form (we omit the asterisks) 

f A6tql (x , t )+q2(x , ' ) ]+ I [q , (~ , t )+q2(~ , t ) l l n l~ -x ld~  - 3 ~ !  At,) 
A(t) 

3 A 2 ~ FI(/~2) x 2 
- g ~ ' 3  ~ I q2(~ ,~) qA--'~-----X) d~dx=Al(t)+xA2(t)A'--~4 

A('O 

' exp(-/~22 ) a s t q l ( x , t ) - q 2 ( x , t ) l - I  I ql(~.x) e x p ( - R 2 ) d ~ d x + A , J  I q2(~ ,z) 
0 A(~) t -  "C 0 A(x) 

x $ A(t), t > 0  

[ql ({ , t )+q2(~, t )]d~ = 1, 
a(t) 

^ 

q l ( ~ , x ) ~ d ~ d x -  

t-~ 

[ ~[ql(~,t)+q2(~,t)ld~=A7 
a(t) 

=0, 

Here h,(t)=2rA,(t)A2(O), h 2 ( t ) = 2 r ~ ( t ) ,  ~ 1 = ~  

x - ~  ~.1 _ k I A(O) 
R2=2 A~2(t_X) A1=~2" 2 '  A2- F A3 =81 , A4= 

• ' 82 & 

A5 = 2~tKiho ltJ,t([31 +1~2) A7 = e 4P(I-Vl2)r 
T '  A6= 2Ao(I-v12) ' "~"'  A2(0)= ~li 

(A(0) is the half-length of the contact region of the corresponding isothermal Hertz problem 12]). 
The following physical inequalities define the contact region 

(2.7) 

(2.8) 

p(x, t) ;~ O, x ~ A(t). t > 0  

Ul(X , t ) -u2(x , t )  ~ A l ( t ) + x A 2 ( t ) - g ( x ) ,  x '~A( t ) ,  t>0  (2.9) 

3. N U M E R I C A L  S O L U T I O N  OF T H E  S Y S T E M  OF 
I N T E G R A L  E Q U A T I O N S  

We divide the time interval [0, t] into I parts of length 5t = t/l: 0 = Xo < xl < • • • < xt-1 < xt = t. We introduce 
into the contact region A(t)  = [a(t), b(t)] a uniform grid 

a ( z ) = ~ o < ~ t < ' " < ~ n - I < ~ n = b ( x ) ,  ~i=a(x)+i~J,  i=0,1 ..... n 

= [~x) - a(~)l/n 

Using a set of pieoewise-linear finite functions {9i(~)}ni=0 [8] we construct an approximation of the functions 
p(~, t), q,(~, t), (r = 1, 2) in the form 

p(~,t) "--- pn(~.t)= ~ p(~i,t)gi(~) (3.1) 
i=0  

qr(~,t)=--q~(~,t) = ~. qr(~i , t )~i(~) ,  r = l , 2  (3.2) 
i=0 

The uniform error of this approximation for functions of the class C2([a(t), b(t)]; R 1) is of the order of 
[81. 

Using expansion (3.1) for the function 

J¢(xk . t t )=  I p(~,tt)lnl~-xkld~, x k = ~  k, k=0,1 ..... n 
A(t l) 

we find its approximate value in the form 

:[ M p., 
i=0  

Pit " P(~i,tt ) 
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M~k=Ct[,, M~=[3i~+Ct~+l./c, i=1,2 ..... n - l ;  M~=~i~k 

aT, = 2 ~ln  I ~ I +~[,~o(K - i +  I)--,~,(K --i+ 1)] 

1 8~inl~l+~xl(k_i+l) ' i,k=l,2 ..... n 

~ . . t i ) = * ~ . l , l - ¢ , - ~ ) ~ n l i - t l - i  

,,.(.) = ½ [<,- ,2),n I . -  ll+k2,n I k l - , -  ½] 

Using expansion (3.2) we approximate the function 

jtr(Xk,tl) = J't I 4~r('tl_,t)qr(~"[) Vl ~ (  Xk-~_ /]d~dz' 

/~1 = I, fc2=A2, 
by the sum 

n i 
J ; . , =  5'. y_. " '"  ' ' Mijklqij. qij " q~ (~i, ~) ) 

i=o jf l  

Mojld tr tr tr oLtr =oqjkI, Mijld=~ipd + i+l,jkt, i=1,2 ..... n - I  

,, ,, l % ,,  = - Cijld ) 

-~i_lcijkt), i=1.2 ..... n; r=l .2  

Or _ [-mCl[F4]l +1¢2[F412, j;~l 
cijtt - (K:2[ F4 ] 2 , ~  j = l  

Xqp = ~ ,  

i I = (k - i) ~x, 

r = l , 2  

_ Kq - - - ~ -  2 , [F4]q = F4(X;2)-F4(Xql), p,r,q=l,2 

x2 =(k - i+ l )~x .  tl = ( i - j - ~ 2 ) S t .  t2 = ( l - j +  l/2)St 

The influence functions c~-~/(r : 1, 2) differ from c~a by the factor (/~'q),r2 when [F4]q is replaced by [~F4] q. The 
form of the functions F4('), hu4(-) is given in [3, 9]. 

Similarly. using (3.2) we construct an approximation of the function 

Ir(Xk,ll)=l ~ qr(~'Z) e x p l - ~ l d ~ d z ,  r=l .2  
O A(.) i t -  ~ ~ 2~]fc.(t l - x ) )  

Taking these approximations into account, we reduce integral equation (2.7) and (2.8) to a system of algebraic 
equations of order 2n + 2 in the same number of unknowns q/~ (i, k = 1, 2 . . . . .  n; r = 1, 2), A1(tl) and A2(tl). This 
system was solved numerically for a number of values of the input pararnetersAl,. . .  ,A 7. The limits of the contact 
region a(t) and b(t) were found by an iterative method by a direct check of inequalities (2.9). 

Knowing the thermal fluxes q~r/)(r = l, 2; i = 1, 2 . . . . .  n;j = 1, 2 . . . . .  t), we can determine the contact pressure 
and the temperature from the formulae 

Pil =q~:)+q~:), i = i , 2  ..... n 

I 
T(klr) = Sr ~ ~ ~(r)d(r ) 1 "lij ~ijld' NI N2 = Al k = 1,2 ..... n 

j = l  i=l =-2-'~ ' 2~ ' 
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In order to reduce the number of parametersA 1 . . . . .  A7 we assumed in the calculations that the contact thermal 
resistance is small (,45 = 10 -3) and there is no eccentricity (AT = 0). In addition, we investigated the heat generation 
for two cases of friction between the bodies: 

1. one of the bodies is thermally insulated, i.e. AI = A~ = A 3 = 0 (version 1); 
2. the bodies are identical, i.e.Al = A2 = A3 = 1 (version 2). 
Hence, the number of input parameters has been reduced to two:A4, representing the extent to which the surfaces 

are identical, and A~, which specifies the microgeometry of the contact. 
In Fig. 2 we show the change in the diagram of the dimensionless contact pressurep*(x °, t*) (24), whereA4 = 

10 andA6 = 5 for three values of the dimensionless time t* = 0, 5 and 10 (curves 1-3, respectively). On the left- 
hand side in Fig. 2 we show the results of a calculation for version 1, while on the right-hand side we show the 
results for version 2. The form of the curves indicates that the pressure distribution is close in form to that of the 
Hertz distribution. 

In Fig. 3 we show the change with time of the half-length of the contact section A* and the maximum value of 
the temperature in the contact region Tma x. Curves I and 2 correspond to calculations of versions 1 and 2 with A4 
= 10 andA6 = 5. It can be seen that when 0 < t* < 8 the half-length of the interaction region decreases linearly, 
reaching a steady v~due when t* ~ 20. Note also that because of the assumption that the surfaces of the bodies 
are thermally insulated outside the contact region, the temperature field is not found to reach a steady state. 

Another picture in the behaviour of the diagram of the contact pressure is observed when A 4 increases. In Fig. 
4we showp*(x*, t*) as a function oft* forAt = A 2 = A 3 = 0,A4 = 35,A 6 = 0. Curves 1--6 relate to the instants 



692 A . A .  Yevtushenko and V. I. Pauk 

of dimensionless time t* = 0, 2.5, 30, 33, 38 and 40, respectively. It can be seen that as time passes the maximum 
value of the pressure gradually shifts from the centre to the edge of the contact region. Whent* ~ 31 in the central 
part of the contact area separation of the interacting surfaces occurs. This ring shape of the contact region exists 
up to t* -= 37, after which it again becomes simply connected. The pressure becomes equalized, reaching a steady 
value. 

The change of the half-length of the interaction region A* with time is shown in Fig. 5. Curves 1-3 correspond 
toA4 = 10, 20 and 35. The dashed curve corresponds to the time interval during which separation of the contact 
region occurs. 

Note that when A 4 is increased further there may be several regions of separation. Thus, forA4 - 55 (version 
1) there will be two contact regions, while forA 4 ~ 80 there will be three. 

Hence, we have established that during transient heat generation due to friction there is a minimum value of 
the parameter A4 (for the problem considered A4 ~ 30 for version 1 and A4 -= 37 for version 2), for which the 
contact region becomes multiconnected. This is due to the fact that, for a fixed load, the slipping velocity Vreaches 
a critical value corresponding to the beginning of thermal instability. The determination of this value is a separate 
problem. 
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